
SUBGRAPH OS

H
A
N
D
B
O
O
K

Subgraph OS Handbook

2

Contents

Preface . 6

Subgraph OS . 7

What is Subgraph OS? . 8

What do we mean by security and privacy? 9

What is adversary resistant computing? . 9

Getting help with Subgraph OS . 11

Reporting bugs . 12

Getting the Subgraph OS Handbook 13

Installing Subgraph OS . 14

System requirements . 15

Downloading and verifying the Subgraph OS ISO 16

Verifying the ISO on a Linux computer 16

Installing from a USB drive on a Linux computer 18

Creating a USB installer using Gnome Disks 18

Creating a USB installer using dd . 24

Booting from a USB drive (Live mode) . 25

Everyday usage . 27

Browsing the Web with Tor Browser . 28

Configuring the Tor Browser security slider 28

Downloading and saving files in the Tor Browser 29

Uploading files in the Tor Browser . 29

Viewing PDFs . 32

Opening PDFs with Evince in the file explorer 34

3

4

Adding PDFs to Evince from the Oz menu 34

Opening PDFs from the command-line terminal 36

Chatting with CoyIM . 37

Adding an XMPP account to CoyIM 38

Chatting over Tor with Ricochet . 41

Chatting in Ricochet . 43

Adding a contact in Ricochet . 44

Sharing files with OnionShare . 45

Share via OnionShare . 47

Download files from OnionShare . 49

Monitoring outgoing connections with Subgraph Firewall 50

Allowing or denying connections in Subgraph Firewall 50

Configuring firewall rules in Subgraph Firewall 53

Features and advanced usage . 57

Sandboxing applications with Subgraph Oz 58

Enabling an Oz profile . 60

Disabling an Oz profile . 60

Viewing the status of an Oz profile . 60

Creating an Oz profile . 61

Securing system calls with seccomp in Oz 63

Profiling applications with oz-seccomp-tracer 64

Adding a seccomp policy to an Oz application profile 64

Anonymizing communications with Tor . 65

Tor integration in Subgraph OS . 66

Routing applications through Tor with Subgraph Metaproxy 67

Securing the Tor control port with ROFLCopTor 68

Profiling applications with ROFLCopTor 68

Editing ROFLCopTor policies . 69

Hardening the operating system and applications with Grsecurity 71

Configuring PaX flags with Paxrat . 71

Applying PaX flags . 73

5

Anonymizing MAC addresses with Macouflage 74

Preventing unauthorized USB access with USB Lockout 75

Enabling/disabling USB Lockout . 75

Using virtual machines in Subgraph OS . 76

Creating a virtual machine with Qemu 76

Creating a basic Linux virtual machine 76

Creating an advanced Debian Stretch virtual machine using debootstrap 78

Setting up simple networking in Qemu/KVM 80

Appendix . 81

System call table . 82

6

Preface

We have created this handbook as an instructional manual on how to use the Subgraph op-
erating system. This handbook also introduces various security and privacy enhancing tech-
nologies that we have developed at Subgraph.

We wrote this book for new users of Subgraph OS. Whether you are new to Linux or coming
from another Linux-based operating system, we want to ease your transition to Subgraph
OS.

In the first section, we describe how to perform common tasks such as installing Subgraph
OS and using the various applications that are included. Start here to get up and running
with Subgraph OS as quickly as possible.

The next section describes the various features of Subgraph OS that distinguish it from other
operating systems. Users can refer to this section to learn the various security and privacy
features. Advanced users will find this section useful for configuring operating system fea-
tures and Subgraph applications.

7

Subgraph OS

8

What is Subgraph OS?

Subgraph OS is an adversary resistant computing platform.

Subgraph OS empowers people to communicate, share, and collaborate without fear of
surveillance and interference. We designed it so that our users can safely perform their
day-to-day tasks securely and privately.

In some ways, Subgraph OS is like other operating systems – it is derived from Debian
GNU/Linux. It provides the familiar GNOME desktop environment as its graphical user inter-
face. SubgraphOS includes applications found in other Linux distributions. These similarities
make Subgraph OS easy to adopt, especially for users with prior Linux experience.

Subgraph OS also has key differences from conventional Linux operating systems. In partic-
ular:

1. Subgraph OS anonymizes Internet traffic by sending it through the Tor network
2. Security hardening makes Subgraph OS more resistant to security vulnerabilities
3. Subgraph runs many desktop applications in a security sandbox to limit their risk in

case of compromise

9

What do we mean by security and privacy?

People attach different meanings to the words security and privacy. In computer security,
a secure system is one that assures the confidentiality, integrity, and
availability of information it stores, processes, or communicates.

Confidentiality assures that information is not revealed to anybody
who is not authorized

Integrity assures that information cannot be modified or tampered
with by anybody who is not authorized

Availability assures that information can be reliably accessed by
those who are authorized

Privacy is similar to confidentiality. Privacy also relies heavily on the integrity of commu-
nications. Our computers and other devices gather a great deal of information about our
thoughts, our lives, and our social networks. They transmit this information over the Inter-
net without our knowledge and consent. We have no way to trust the systems and networks
that relay our communications over the Internet.

We designed Subgraph OS with these concerns in mind. We did this because we believe
people should be able to communicate with each other privately. We also believe that peo-
ple should not be required to reveal information about themselves or their social network
without explicit consent.

What is adversary resistant computing?

We designed Subgraph from the ground up to defend against threats to security and privacy.
We aim to provide our users with a computing platform that is adversary resistant.

We when use the term adversary, we are referring to an actual or hypothetical threat to the
confidentiality, integrity, and availability of information.

Hackers who exploit software vulnerabilities are a type of adversary. This is an actual and
often active threat to security and privacy.

Adversaries present passive or indirect threats as well. An adversary may be passively gath-
ering network traffic to conduct surveillance on users.

Lastly, adversaries may present theoretical or impractical threats. For example, a cryptogra-
phy algorithmmay have a theoretical weakness. At the time the weakness is discovered, the
threat may not practical in the real world. As technology and attack methods improve, the
weakness ceases to be theoretical and real world attacks emerge.

We use the term adversary to cover all of the above possibilities.

10

Secure systems should be resistant to all of these types of threats.

While no computing platform can anticipate and defend against all possible threats by all
possible adversaries, we aspire to make such attacks extremely difficult for adversaries. By
making these attacks difficult, they also becomemore expensive for adversaries. Adversaries
must bear the cost at scale if a large number of users deploy strong security and privacy
defenses. Through Subgraph OS, we aim to make these defenses freely available and easy
to deploy.

Some of our users have critical security and privacy needs. Subgraph OS grants them strong
security and privacy to conduct their activities safely. Casual users also gain the same security
and privacy benefits without having to sacrifice usability and maintainability.

This is adversary resistant computing.

11

Getting help with Subgraph OS

We hope to address most concerns with this handbook. If you have questions that are not
addressed in this handbook, you can contact us through other means.

Contacting Subgraph

Email: Our email address is info <at> subgraph.com

IRC: You can join our IRC channel #subgraph on the OFTC network

Our IRC channel is also available through webchat at:

https://webchat.oftc.net/?channels=#subgraph

Twitter: Our Twitter is@subgraph, send us a message

We are also involved in running the Secure Desktops mailing list. This discussion group
covers the topic of Secure Desktop operating systems such as Subgraph OS, Qubes OS, and
Tails. Developers from these projects participate in the mailing list.

Further information about Secure Desktops can be found here:

https://secure-os.org/desktops/charter/

https://webchat.oftc.net/?channels=#subgraph
https://secure-os.org/desktops/charter/

12

Reporting bugs

If you find a bug in Subgraph OS, you can report it to us on Github.

Our issue tracker for Subgraph OS is:

https://github.com/subgraph/subgraph-os-issues

You can also find our individual software repositories at:

https://github.com/subgraph

https://github.com/subgraph/subgraph-os-issues
https://github.com/subgraph

13

Getting the Subgraph OS Handbook

Up-to-date versions of this handbook can be found on the following page:

https://github.com/subgraph/sgos_handbook

The PDF can be downloaded here:

https://github.com/subgraph/sgos_handbook/raw/master/build/sgos_handbook.pdf

Subgraph OS will also include versions of this handbook in different formats.

https://github.com/subgraph/sgos_handbook
https://github.com/subgraph/sgos_handbook/raw/master/build/sgos_handbook.pdf

14

Installing Subgraph OS

15

System requirements

Subgraph OS runs on Intel 64-bit computers. These are the system requirements:

• Intel 64-bit processor (Core2 Duo or later)
• 2GB of RAM (4GB recommended)
• At least 20GB of hard-disk space

16

Downloading and verifying the Subgraph OS ISO

Subgraph OS can be downloaded from our website:

https://subgraph.com/sgos/download/index.en.html

The SubgraphOS download page always has themost up-to-date download links and instruc-
tions. You can download the ISO directly from the website or over a Tor hidden service.

You should always verify that the ISO you downloaded is the official version. To verify the
ISO, we have included a checksum that is cryptographically signed by our developers.

What is a checksum?

A checksum (or hash) is a string that uniquely identifies some piece of
data as being different from another piece of data. It is computed us-
ing a special hash algorithm (SHA256 in our case). When data is passed
to the hash algorithm, the algorithm will return a shortened string (the
checksum) that uniquely identifies the data. Checksums are often used to
ensure the integrity of a file. Integrity in this case means that the
file has not been corrupted or tampered with during the download.

What is a cryptographic signature?

A cryptographic (or digital) signature is a method of authenticating a piece
of data. Data is signed with the private signing key of a person who
has created or is sending the data. The signature can then be verified by
the recipient using the public key of the sender. If the verification is
successful, this ensures that the data was created or sent by the person
who signed it and not somebody else. This authenticates the identify
of the creator or sender.

Why do we cryptographically sign the checksum?

The checksum is used to verify the integrity the ISO you have down-
loaded. However, how do you verify that the checksum on our website
was provided by us? By cryptographically signing the checksum with our
private key, you can verify the authenticity of the checksum.

Verifying the ISO on a Linux computer

To verify the ISO on a Linux computer, you will need to download the ISO, SHA256 checksum,
and the signature for the checksum.

The first step is to download our public key, Our public key can be downloaded with the
following command:

https://subgraph.com/sgos/download/index.en.html

17

$ gpg --recv-key B55E70A95AC79474504C30D0DA11364B4760E444

The second step is to verify the authenticity of the signature for the checksum. Run the
following command to verify the signature (note: replace the filenames with the names of
the files you downloaded):

$ gpg --verify subgraph-os-alpha_2016-06-16_2.iso.sha256.sig \
subgraph-os-alpha_2016-06-16_2.iso.sha256

After running this command, you should see a Good Signature message. If you have
seen this message then you can proceed to the next step.

The third step is to verify the integrity of the ISO using the SHA256 checksum. Run the
following command to verify the checksum (note: replace the filenames with the names of
the files you downloaded):

$ sha256sum -c subgraph-os-alpha_2016-06-16_2.iso.sha256

After running the command, you should see:

subgraph-os-alpha_2016-06-16_2.iso: OK

Congratulations, you have now downloaded and verified the Subgraph OS ISO. You are now
ready to try it out!

18

Installing from a USB drive on a Linux computer

This section describes how to create a USB installer using Linux. One of these methods will
work on any Linux computer (even on Subgraph OS). To create an installer you will need a
USB drive with a capacity a 2GB or more.

Creating a USB installer using Gnome Disks

If you have a Linux computer that is running the Gnome Desktop, you can use the Gnome
Disks application to create a USB installer.

The following steps show how to make a USB installer using Gnome Disks:

1. Insert a USB drive into your Linux computer

2. Open the Gnome Disks application

3. Select your USB drive

Figure 1: Gnome Disks - select USB drive

19

4. Select the Format Disk option in the top right corner of Gnome Disks

Figure 2: Gnome Disks - Format Disks… option

20

5. Format the USB drive

Figure 3: Gnome Disks - Format dialog

21

6. Select the Restore Disk Image option in the top right corner of Gnome Disks

Figure 4: Gnome Disks - Restore Disk Image… option

22

7. Choose the ISO file you want to restore (copy) to the USB drive

8. Restore the ISO to the USB drive

Figure 5: Gnome Disks - Restore dialog

23

It should take a few minutes to copy the ISO to the USB drive.

24

Creating a USB installer using dd

If your Linux computer is not running Gnome Desktop or you want to create the installer
from the command-line, you can use the dd utility.

The following steps show how to make a USB installer using dd:

1. Insert a USB drive into your computer

2. Open a terminal and run the following command to identify the name of the USB drive:

$ lsblk

NOTE: You should see a name such as /dev/sdx for your drive, for example: /dev/sdb.
It is important to use only the name without the partition number. If you see some-
thing like /dev/sdb1, you can omit the 1 at the end. The dd command uses the name
without the partition number.

3. In the same terminal, run the following command:

$ dd bs=4M if=subgraph-os-alpha_2016-06-16_2.iso of=/dev/sdx \
status=progress && sync

NOTE: Replace the path of the ISO with the path of the ISO you have downloaded and
verified. Replace /dev/sdx with the name of your USB drive, for example: /dev/sdb.

Copying the ISO to the USB drive should take a few minutes.

25

Booting from a USB drive (Live mode)

Subgraph OS also features a ‘live’ mode. Subgraph OS live mode runs in memory, directly
from the USB drive. While running in live mode, nothing will be saved to your hard-drive.
When the live session ends, any data created during your session will disappear, leaving no
traces behind on the hard-disk.

People normally run in live mode for the following reasons:

1. They want to demo Subgraph OS
2. They want to test Subgraph OS with their particular hardware
3. They want to perform certain tasks with extra security and privacy but do not want a

permanent installation of Subgraph OS

26

When the Subgraph OS ISO starts, you will be presented with different options. To start the
live mode, select Live (amd64).

Figure 6: Subgraph OS boot screen

Please note that the user password on the live image is: live.

27

Everyday usage

Subgraph OS comes with a number of applications that may already be familiar. We have
also added newer alternatives that may be less familiar. This chapter shows you how to use
these applications to perform everyday tasks.

Subgraph OS is also unique because the applications we have included are run inside of a
security sandbox. We call this sandbox Oz. Oz helps protect the operating system and your
personal files in case an application is compromised by a security vulnerability.

Each application described in this chapter runs inside an Oz sandbox. This means that they
can only access the files and directories that they need to. Each of the applications is isolated
from each other. They are also isolated from the system itself. Because the applications are
isolated, they cannot access common directories such as Pictures or Downloads in the
usual way. This chapter shows you how to manage your files in Oz, with some examples for
each application.

28

Browsing the Web with Tor Browser

Tor Browser is the default web browser of Subgraph OS. It has a number of security and
privacy advantages over other browsers.

The security and privacy features include:

• Anti-fingerprinting countermeasures to prevent websites from identifying individual
users by their browser fingerprint

• A security slider that lets users disable browser features that may pose security and
privacy risks

The Tor Browser runs inside a security sandbox, managed by Subgraph Oz. Web browsers
represent some of the most complex software available. With complexity comes increased
risk to security and privacy. This is what we call the attack surface of an application. Tor
Browser is no different than other browsers in that it has a lot of attack surface. A successful
compromise of Tor Browser could let an attacker gain access to things such as SSH keys, GPG
encryption keys, personal files, email, etc. Our security sandbox technology helps tomitigate
these risks.

Configuring the Tor Browser security slider

The Tor Browser includes a security slider that lets users choose the security and pri-
vacy features they want to enable. If they enable all of the security and privacy settings, some
websites may be slower or may not work as expected. However, the security slider lets them
instantly lower the settings if they need a particular website to work better.

We recommend setting the security slider to Medium-High or High. For websites you trust,
you can lower the settings to make the website perform better.

We advise against lowering the security slider for any websites that are not accessed over
HTTPS. HTTPS helps to make sure that the traffic between the Tor Browser and the website
has not been tampered with. This is what we refer to as the ‘integrity’ security property. If
you cannot verify the integrity of the traffic originating from awebsite by using HTTPS, it may
be dangerous to visit the website using lowered security and privacy settings.

29

Downloading and saving files in the Tor Browser

The Tor Browser runs inside of Oz, our application sandbox. When files are downloaded by
a sandboxed application such as the Tor Browser, they are saved within the sandbox. When
you close the Tor Browser, Oz will cleanup the sandbox, causing files saved in the sandbox
to be destroyed.

To allow the Tor Browser to download that can persist after the application is closed, Oz
makes a special exception. This special exception is a shared directory where files can
be saved and retrieved later, without being destroyed when Tor Browser is closed. Shared
directory, in this case, means a directory that is shared inside and outside of the Oz sand-
box. Oz sets up the the following shared directory for saving downloaded files:

~/Downloads/TorBrowser

The shared directory name may be localized depending on the language settings on your
computer. In the case of French, the shared directory would be:

~/Téléchargements/TorBrowser

Files downloaded to the shared directory will persist after closing the Tor Browser.

Uploading files in the Tor Browser

When the Tor Browser starts, the Oz sandbox limits its access to files and directories on the
computer. For example, a photo from the Pictures directory will not be visible in the sand-
box by default. If you want to upload a photo from this directory, you must use the Oz menu
to add it to the Tor Browser sandbox. The Oz menu is denoted by the little zebra icon at the
top-right corner of the screen.

The following actions may be performed using the Oz menu:

• Add files to sandbox

• Open terminal in sandbox

• Shutdown sandbox

30

Click on the little zebra and then click Add file....

Figure 7: Oz menu - Add file

You may add more than one file at a time. You may also choose to make these files
read-only, meaning that they can only be read and not written to while in the sandbox.

31

Figure 8: Oz menu - Select files or directories

32

Once the file(s) you want to upload are added to the Tor Browser sandbox, you may proceed
to upload them normally.

Viewing PDFs

PDFs present security and privacy risks to users. Subgraph OS sandboxes PDFs in a safe
environment, minimizing those risks.

PDFs are affected by the following security and privacy risks:

1. PDF readers have security vulnerabilities that can be exploited by opening a malicious
PDF

2. PDFs may make outgoing connections to the Internet, compromising the user’s pri-
vacy either by sending personally identifiable information or network traffic that can
be correlated with the user’s other activities

To address the first problem, the security hardening in Subgraph OS makes it much more
difficult to exploit security vulnerabilities in the PDF reader (Evince).

If a malicious PDF bypasses the security hardening in Subgraph OS, it compromises the PDF
reader. However, because Evince runs inside of a sandbox, this limits what an attacker can
do. The sandbox in Subgraph OS is called Oz.

The sandbox prevents Evince from accessing sensitive files on the computer, such as your
encryption keys, email, personal documents, etc. Evince only requires access to the PDF(s) it
is reading and some other files it needs to operate normally.

Oz also prevents Evince from connecting to the Internet. This can prevent malicious code
from communicating with the outside world. Privacy is also preserved since Evince cannot
send data that can fingerprint the user.

Lastly, the sandbox limits other types of actions through a Linux feature called seccomp.

What is a system call?

System calls provide a way for applications, which run in user-space, to ask
the kernel (running in kernel-space) to do things such as read andwrite files,
communicate over the network, etc.

When a user-space application makes a system call to do something such
as open a file, the kernel must perform a number of low-level actions. The
kernel may be responsible for the file system implementation, authorizing
the application to access the file, reading the file contents from the hard-
drive, etc. The kernel must run with elevated privileges in relation to the
application to perform these low-level actions. System calls let applications

33

cross the boundary between user-space and kernel-spacewithout requiring
the application to run with kernel-level privileges.

System calls are critical to security because they provide an interface for
lower-privileged applications to send input to the kernel.

See the Appendix for a complete list of system calls in Subgraph OS.

Sandboxed applications in Subgraph OS include a set of policies called a seccomp whitelist. If
an attacker compromises an application, this security feature can prevent them from gaining
elevated privileges on your computer.

What is seccomp?

Seccomp is a security feature of Linux that can restrict access to system
calls. If an application tries to run one of the system calls restricted by sec-
comp, it will be killed instead of allowing the system call to run. This can
prevent privilege escalation in case malicious code tries to exploit kernel
vulnerabilities through system calls. System calls are often used as a pay-
load in malicious code to do some things as read files or open network
connections. Seccomp can also prevent payloads from running if they use
system calls are that blocked by the policy.

What is a seccomp whitelist?

A seccomp whitelist is a list of allowed system calls. If the application tries
to call any system call not on this list, it is killed by seccomp.

What is a seccomp blacklist?

A seccomp blacklist is a list of forbidden system calls. If the application tries
to call any system call on this list, it will be killed by seccomp. This is in
contract to the whitelist, which blocks the calls not on the list.

The Oz sandbox in Subgraph OS supports both seccomp whitelists and sec-
comp blacklists.

34

Opening PDFs with Evince in the file explorer

Clicking on a PDF in the file explorer will automatically open the PDF using Evince in the Oz
sandbox.

Adding PDFs to Evince from the Oz menu

If the PDF reader is already open, the PDF can be added to the sandbox by clicking on Add
file… option of the Ozmenu for Evince.

Figure 9: Oz menu - Add file

35

Youmay addmultiple files. You can alsomake these files read-only, meaning that they cannot
be modified in the sandbox.

Figure 10: Oz menu - Select files or directories

36

Opening PDFs from the command-line terminal

PDFs may also be opened from the terminal.

For example, to open this handbook using Evince in the terminal, run the following com-
mand:

$ evince sgos_handbook.pdf

After running the command, you will see the following message:

ok received

This message indicates that Oz has received the request to launch Evince.

You may be surprised that opening the PDF from the terminal also opens it in the sandbox.
This is because Oz re-routes the commands so that they run in the sandbox. For any applica-
tion that runs in Oz, you may launch it from the desktop or the command-line terminal.

37

Chatting with CoyIM

CoyIM is one of the instant messaging clients in Subgraph OS. CoyIM supports the
Jabber/XMPP instant messaging protocol. All chats are end-to-end encrypted using OTR
(Off-the-Record) Messaging.

CoyIM is developed by the ThoughtWorks STRIKE team as a more secure alternative to chat
software such as Pidgin and Adium.

More information about CoyIM can be found here:

https://coy.im/

https://coy.im/

38

Adding an XMPP account to CoyIM

When CoyIM opens for the first time, it asks you if you want to encrypt your configuration
file. We recommend that you encrypt your configuration.

Figure 11: CoyIM - Encrypt configuration file

If you have decided to encrypt your configuration file, you will be prompted to configure the
master password that will be used to encrypt your configuration file. Youwill need to re-enter
this password each time you use CoyIM, so choose something strong but memorable!

Figure 12: CoyIM - Configure master password

To begin using CoyIM, you must first add an existing account from an XMPP network.

Once you had added your account details, you can connect your account. If you have suc-
cessfully connected to the chat network, a green dot will appear to the left of your username.

39

Figure 13: CoyIM - Account details: basic configuration

40

Figure 14: CoyIM - Successful connection

41

Chatting over Tor with Ricochet

Ricochet is an anonymous peer-to-peer instant messaging application. Ricochet lets people
chat directly with each other over Tor. Unlike other chat services, no intermediate servers
are required. This means that Ricochet does not store your contact lists and chat histories
on a server somewhere in the cloud.

Ricochet is built on top of Tor hidden services. Tor hidden services provide anonymity and
end-to-end encryption. This enables people to have conversations that are private and se-
cure.

What is a Tor hidden service?

Tor hidden services provides a means of hosting services on the Tor net-
work. Any type of network servicemay be hosted as a hidden service (such
as web servers, file shares, and instant messaging servers).

Instead of using an IP address or domain name, Tor hidden services are
accessed by their .onion address. The .onion address is an automatically
generated name that is derived from the public key of the hidden service.

.onion addresses are only accessible over Tor. Tor Browser is one way to
access .onion addresses. In SubgraphOS, any application can access .onion
addresses because all applications are routed through Tor.

Tor hidden services provide privacy and anonymity for both the server and
the client. Tor hidden services have the following benefits over regular
network services:

1. Neither the client nor the server need to know the network location
(IP address) of each other. Tor routes traffic through a series of ren-
dezvous points that hide the client IP address from the server. The
server’s network location (IP address) is also hidden from the client,
who connects to the .onion address of the server.

2. All traffic between the client and server is end-to-end encrypted. Traf-
fic never leaves the Tor network, meaning that it is only decrypted
on either end of the transaction. When Tor is used to connect to the
regular Internet, traffic is only encrypted until the exit-node. Without
using another layer of encryption such as HTTPS, exit nodes can ob-
serve traffic. Tor hidden services are not affected by this limitation.

More information about the hidden services protocol can be found here:

https://www.torproject.org/docs/hidden-services.html.en

In Ricochet, each user has a contact ID that maps to a Tor hidden service that is hosted on

https://www.torproject.org/docs/hidden-services.html.en

42

their computer. The application manages all of the plumbing of creating the hidden service
on your computer and communicating with your contacts via their hidden services.

More information about Ricochet can be found on the following pages:

• https://ricochet.im/
• https://github.com/ricochet-im/ricochet/blob/master/doc/design.md

https://ricochet.im/
https://github.com/ricochet-im/ricochet/blob/master/doc/design.md

43

Chatting in Ricochet

Ricochet is similar to other instant messaging clients. The application shows the contacts
that are online. You can open chat sessions with your contacts and switch between those
sessions like in any other instant messager.

Figure 15: Ricochet - Chatting

44

Adding a contact in Ricochet

If you know the contact ID of another user, you can add them as a contact. To add a contact,
click the + button in the top-left corner of the application window.

Figure 16: Ricochet - Adding a contact

Ricochet contact options

ID: The contact ID of the contact you want to add

Name: A nickname for the contact you want to add

Message: The message you want to send when adding the contact

45

Sharing files with OnionShare

OnionShare is a anonymous, peer-to-peer file sharing application. It lets people share files
of any size private and securely.

OnionShare is built on top of Tor hidden services. There are a number of security and privacy
advantages to sharing files over Tor hidden services using OnionShare.

1. Tor hidden service connections are end-to-end encrypted, meaning that the file trans-
fer is encrypted at every point between the client and server.

2. Tor hidden service connections are anonymous. File transfers can occur without the
either the client or the server knowing the IP address of each other. The server is
hidden behind an .onion address on the Tor network. The client is hidden because it
connects to the hidden service through different rendezvous points.

3. OnionShare file shares are designed to be short-lived. They can shut down after the file
transfer occurs, meaning the server stops listening and the .onion address disappears
from the Tor network.

Subgraph OS enhances the security of OnionShare by sandboxing it with Oz. File shares
exist in their own sandbox, without access to other sensitive files on the computer. If Onion-
Share is affected by a security vulnerability, running it Oz limits the consequences of the
vulnerability.

When a user shares files, OnionShare starts a hidden service with its own .onion address.
The user then sends the .onion address to the people they wish to share files with. The .onion
address should be sent over a secure communication channel. This is important to prevent
unwanted parties from accessing your shared files. Once files are shared, people with the
.onion address can download the files using the Tor Browser.

What is a secure communication channel?

A communication channel is secure if people can communicate with some
expectation that their conversation cannot be intercepted or tampered
with. Ideally, all communications should be encrypted along with their
metadata. Metadata includes things such as the time, date, and frequency
of the conversations. It can also include the identities and location of the
people who are communicating. Even without the content of a conversa-
tion, metadata can reveal a lot about the nature of the communication.

Establishing truly secure communications channels is difficult. Many com-
munications tools rely on third-parties, making them privy to communica-
tions metadata. This may include the third-party servers themselves or
intermediary servers that pass on the communications. Communications,
even encrypted ones, often leak metadata as they travel to their final des-
tination.

46

Subgraph OS includes applications to help our users communicate over
secure channels. These examples are ranked according to the amount of
metadata they reveal:

• Ricochet instant messager (uses Tor hidden services for anonymity
and end-to-end encryption, no metadata, no third-party servers re-
quired)

• CoyIM instant messager (uses the XMPP protocol, some metadata,
requires third-party servers)

• Encrypted email using Icedove/Torbirdy (uses the SMTP protocol,
lots of metadata, requires third-party servers)

More information about OnionShare is on the following website:

https://github.com/micahflee/onionshare

https://github.com/micahflee/onionshare

47

Share via OnionShare

OnionShare is integrated into the file explorer of Subgraph OS. To share a file, right-click on
the file and select Share via OnionShare.

Figure 17: OnionShare - Share via OnionShare

48

Selecting Share via OnionShare will start OnionShare and open the onionshare-gui. It may
take a few seconds for OnionShare to create the hidden service. The status indicator will turn
green when it is ready.

Figure 18: OnionShare - onionshare-gui

onionshare-gui includes the following options to manage shared files:

• Add Files
• Add Folder
• Delete (Files and Folders)
• Stop Sharing (all files and folders, this closes OnionShare)

OnionShare runs inside of the Oz sandbox. To add files and folders after OnionShare has
started, they must be added through the Oz menu at the top right corner of the desktop.
See the section on Viewing PDFs for further information on adding files and folders to an
application in the Oz sandbox.

The URL for the hidden service (the .onion address) is provided along with a button to Copy
URL to the clipboard. This URL should be sent over a secure communication channel to the
people you want to share files with.

The Stop sharing automatically checkbox determines whetherOnionSharewill close automat-
ically after the file is downloaded by a user. Un-check this option if you are sharing files with
multiple users.

49

Download files from OnionShare

OnionShare runs as a Tor hidden service. To download files over OnionShare, you can use
the Tor Browser. Paste the .onion address for the file share into the address bar of Tor
Browser. This will open the web interface for OnionShare.

Figure 19: OnionShare - web interface in Tor Browser

NOTE: In this screenshot, OnionShare (the server) and Tor Browser (the client) are both run-
ning on the same computer. Because the OnionShare server is only accessible over a Tor
hidden service, Tor Browser connects to the file share over Tor. This is the case even if they
are running on the same computer. Of course, normally the server and the client would run
on different computers

50

Monitoring outgoing connections with Subgraph Firewall

Subgraph Firewall is an application firewall that is included in Subgraph OS. While most fire-
walls are designed to handle incoming network communications, an application firewall can
handle outgoing network communications. Subgraph Firewall can apply policies to outgo-
ing connections on a per-application basis.

Application firewalls are useful for monitoring unexpected connections from applications. For
example, some applications may phone home to the vendor’s website. Often this activity is
legitimate (non-malicious) but it still may violate the user’s privacy or expectations of how the
software operates. Subgraph Firewall gives users the choice to allow or deny these connec-
tions.

Malicious code may also phone home to a website or server that is operated by the hacker
or malicious code author. Subgraph Firewall can also alert the user of these connections so
that they can be denied.

Application firewalls cannot prevent all malicious code from connecting to the Internet. So-
phisticated malicious code can subvert the allowed connections to bypass the firewall. How-
ever, the firewall may alert the user of connection attempts by less sophisticated malicious
code.

Our application firewall makes Subgraph OS unique. It is not found in other Linux distribu-
tions. Normally, applications will make outgoing network connections without the knowl-
edge or consent of the user. Subgraph OS helps mitigate these security and privacy risks by
making users aware and giving them the power to decide how applications connect to the
Internet.

Allowing or denying connections in Subgraph Firewall

When Subgraph Firewall sees a connection it does not have a policy for, it prompts the user
to allow or deny the connection. The prompt includes options to define the duration of the
policy and the scope. By scope, we mean apply the policy for the application to a specific
destination or to any connection made by the application.

51

While developing Subgraph Firewall, we noticed some unusual behavior
from Gnome Calculator. We didn’t expect that a calculator would need to
connect to the Internet and so we were surprised to see a prompt from
Subgraph Firewall. Gnome Calculator connects to various bank websites
to fetch the exchange rates for currency conversions.

This type of unexpected behavior is one of the reasons we created Sub-
graph Firewall. Gnome Calculator doesn’t give the user the choice to
fetch the exchange rates. Subgraph Firewall puts that choice back in the
hands of the user.

Figure 20: Subgraph Firewall - allow/deny prompt

Subgraph Firewall Allow/Deny prompt options

At the top of the prompt is the name of the applicationmaking the connec-
tion as well the destination hostname and port.

IP address: The destination IP address

Path: The path to the application that is making the connection

Process ID: The process ID of the application that is making the connection

User: The user who started the application that is making the connection

52

Allow/Deny duration

Forever: Allow or Deny the connection forever (this can be changed after-
wards in the Subgraph Firewall settings)

Session: Allow or Deny the connection until logging out of the desktop ses-
sion

Once: Allow or Deny the connection once (the prompt will re-appear if the
application attempts the connection again)

Allow/Deny scope

Only hostname on port: Allow/Deny the connection for this application only
for the hostname and port listed at the top of the firewall prompt

Any Connection: Allow/Deny any connection made by the application

53

Configuring firewall rules in Subgraph Firewall

To configure the firewall rules, select the Firewall -> Firewall Settings option from theGnome
User Menu at the top right corner of the desktop.

Figure 21: Gnome User Menu - Firewall -> Firewall Settings

54

This will open the Firewall Settings configuration window.

Figure 22: Subgraph Firewall Settings

55

The configuration window shows all of the existing rules.

Each rule has the following columns:

• Application name
• A policy setting of ALLOW or DENY
• The scope of the policy

The last two options are to Edit or Delete a firewall rule.

If you click the Edit button (the button with the wrench), you will be prompted to edit the
Allow/Deny policy and its scope.

Figure 23: Subgraph Firewall Settings - Edit Rule

56

The Options tab of the Firewall Settings window lets you configure general options for Sub-
graph Firewall.

Figure 24: Subgraph Firewall Settings -Options

57

Features and advanced usage

This chapter describes the unique features of Subgraph OS. These are features that distin-
guish it from other operating systems. This is where you can find more information about
the design of Subgraph OS.

As an adversary resistant computing platform, Subgraph OS is designed to resist threats to se-
curity and privacy. This chapter includes more information about how our design addresses
these threats. We also provide links to external sources where more in-depth technical infor-
mation is available.

This chapter also provides documentation for some advanced use-cases in SubgraphOS. This
content is more technical than previous chapters in the Subgraph OS Handbook. It contains
how-tos and referencematerials intended for users who are comfortable running commands
in the terminal and editing configuring files.

58

Sandboxing applications with Subgraph Oz

Subgraph OS runs desktop applications inside of our security sandbox (Oz). The security
sandbox is an additional layer of security, above and beyond the other security features of
Subgraph OS. Subgraph OS is hardened to make it very difficult for an attacker to compro-
mise applications. However, it is impossible to prevent every vulnerability. If an attacker
compromises an application, Oz can help to protect against further compromise of the com-
puter and the user’s sensitive files.

Oz can provide the following protections to sandboxed applications:

• Restrict the files that the application has access to
• Restrict network access
• Restrict audio playback
• Restrict the system calls the application can make (using seccomp)
• Restrict malicious interactions between X11 applications (using xpra)

Each sandboxed application has its own policies to restrict its capabilities.

The following table shows some of the sandbox policies in Subgraph OS:

Application Category Network? Audio?

Tor Browser Browser Proxy port Yes
Icedove Email client Proxy port No
CoyIM Instant messager Proxy port No
Ricochet Instant messager Proxy port No
Hexchat IRC client Proxy port No
OnionShare File sharing Proxy port No
VLC Video player No Yes
LibreOffice Office suite No No
Evince PDF reader No No
Eog Image Viewer No No

59

Oz also sandboxes desktop applications from each other. Normally, applications running
under the X11 display server can interact with each other. This means that one application
can intercept or inject events into another application.

Without Oz or an alternate display server, there is no way to securely prevent applications
from interacting with each other. An attacker could abuse this to perform malicious actions
such as intercepting the keystrokes from another desktop application. To prevent these at-
tacks, Oz sandboxes use xpra to render applications on the desktop. Xpra isolates applica-
tions by using a separate display server to render each application. Since the applications do
not share the same display server, they cannot interact.

For more technical details about Oz and its security features, see the following page:

https://github.com/subgraph/oz/wiki/Oz-Technical-Details

https://github.com/subgraph/oz/wiki/Oz-Technical-Details

60

Enabling an Oz profile

Oz profiles can be found in the following directory:

/var/lib/oz/cells.d

Oz automatically enables profiles in this directory. However, if you need to manually enable
a profile, you can do so by running the oz-setup command to install the profile.

The following example installs the profile for evince:

$ sudo oz-setup install evince

When the profile is installed, Oz will divert the path of the program executable. Instead of the
program running directly, diverting it lets Oz start the program. So the next time it is started,
the program will be sandboxed by Oz.

Disabling an Oz profile

If you want to run a previously sandboxed program outside of the sandbox, youmust disable
its profile. To disable a profile, run the oz-setup command with the remove option.

The following example removes the profile for evince:

$ sudo oz-setup remove evince

When the profile is removed, Oz will undo the divert of the program path. The program will
not run in the Oz sandbox the next time it is started.

Viewing the status of an Oz profile

The status of a program can also be viewed with the oz-setup command.

The following example shows the status of evince:

$ sudo oz-setup status /usr/bin/evince

The command prints the following when evince profile is installed:

Package divert is installed for: /usr/bin/evince
Package divert is installed for: /usr/bin/evince-thumbnailer
Package divert is installed for: /usr/bin/evince-previewer

When the evince profile is not installed, the command prints the following:

Package divert is not installed for: /usr/bin/evince
Package divert is not installed for: /usr/bin/evince-thumbnailer
Package divert is not installed for: /usr/bin/evince-previewer

61

Creating an Oz profile

In this section, we will walk through some of the options in a basic profile.

Oz profiles are written in JSON.

The following is the Oz profile for the eog image viewer:

{
"name": "eog"
, "path": "/usr/bin/eog"
, "allow_files": true
, "xserver": {

"enabled": true
, "enable_tray": false
, "tray_icon":"/usr/share/icons/hicolor/scalable/apps/eog.svg"

}
, "networking":{

"type":"empty"
}
, "whitelist": [

{"path":"/var/lib/oz/cells.d/eog-whitelist.seccomp", "read_only": true}
]
, "blacklist": [
]
, "environment": [

{"name":"GTK_THEME", "value":"Adwaita:dark"}
, {"name":"GTK2_RC_FILES",

"value":"/usr/share/themes/Darklooks/gtk-2.0/gtkrc"}
]
, "seccomp": {

"mode":"whitelist"
, "enforce": true
, "whitelist":"/var/lib/oz/cells.d/eog-whitelist.seccomp"

}
}

Example Oz profile configuration options

name: The name of the profile

path: The path to the program executable

allow_files: Allow files to be passed as arguments to the program (such as
image files for eog)

xserver -> enabled: Enable the use of the Xserver (xpra)

62

xserver -> enable_tray: Enable the xpra diagnostic tray (defaults to false,
enabling it requires extra software)

xserver -> tray_icon: The path to the tray icon

networking -> type: The networking configuration type, empty disables net-
working entirely

whitelist -> path: The path of a file to add to the sandbox, in this case it is
the seccomp whitelist for eog

whitelist -> path -> read_only: Whether or not the allowed file is read-only,
should be true in most cases

blacklist: Removes access to a file in the sandbox, accepts the path argu-
ment

environment -> name, value: Adds environment variables by name and
value to the sandbox

seccomp -> mode: Adds a seccomp policy (either whitelist or blacklist) to the
sandbox

seccomp -> enforce“: The seccomp enforcement mode

seccomp -> whitelist: The path to the whitelist policy

Oz supports a number of different profile configurations. More examples for real applica-
tions are located in the profiles directory:

/var/lib/oz/cells.d

Complete documentation for creating Oz profiles can be found here:

https://github.com/subgraph/oz

https://github.com/subgraph/oz

63

Securing system calls with seccomp in Oz

Seccomp is a feature of the Linux kernel to limit exposed system calls. As system calls provide
a user interface to the kernel, they expose it to attacks. These attacks can let an attacker
elevate their privileges on the computer. The Oz sandbox uses seccomp to protect against
this type of attack.

Oz supports seccomp policies on a per-application basis. Seccomp kills applications whenever
they violate a policy. This protects the computer in cases where an attacker tries to exploit a
vulnerability in the kernel that depends on the blocked system call.

Some attacks also use system calls as part of their payload. A payload is the malicious code
that runs as a result of a successful exploit. The seccomp policies in Oz can prevent payloads
from running if they use a blocked system call.

Oz supportswhitelistorblacklistpolicies. Whitelist policies are default deny. Thismeans that
only system calls that are explicitly permitted will be allowed. All other system calls (those
not on the whitelist) cause the application to be killed.

Blacklist policies are default allow. This means that seccomp blocks system calls in the black-
list policy but allows all others (those not on the blacklist).

Whitelist policies are appropriate when the application is well understood. By well under-
stood, wemean that the behavior of the application is predictable enough to create a precise
profile of allowed system calls. This is more secure than a blacklist because known behavior
of the application is allowed but unknown behavior is blocked. The disadvantage of this ap-
proach is that thewhitelistsmust be updated regularly to reflect the known behavior of the
application.

Blacklist policies are appropriate for applications that are not as well understood. We use
them prior to the creation of a whitelist or if there is some other reason a whitelist cannot
be created.

Oz includes a generic blacklist that will work out-of-the-box with many applications. This
policy blocks unusual or exotic system calls that applications do not normally use.

The Oz generic blacklist is located here:

/var/lib/oz/cells.d/generic-blacklist.seccomp

In Subgraph OS, we try to create whitelist policies for all of our supported applications.

See the Appendix for a complete list of system calls in Subgraph OS. You can use this refer-
ence to look up system call numbers when writing or debugging seccomp policies.

64

Profiling applications with oz-seccomp-tracer

Oz includes a tool to help with the creation and maintenance of seccomp whitelists. The
oz-seccomp-tracer profiles applications as they run to determine the system calls that they
use. This tool will generate a seccomp whitelist after it exits.

To profile Firefox using oz-seccomp-tracer, run the following command:

$ oz-seccomp-tracer -trace -output firefox-whitelist.seccomp /usr/bin/firefox \
2>firefox_syscalls.txt

You can then use Firefox as you normally would. When you are finished, a seccompwhitelist
will be saved to firefox-whitelist.seccomp. oz-seccomp-tracer prints all of the system calls
from the application to stdout. So we also advise you to redirect this output to a separate file.
We use firefox_syscalls.txt in this example. You could also redirect this output to /dev/null
if you don’t want to save it.

Adding a seccomp policy to an Oz application profile

Once you are satisfied with the whitelist, you can copy it to the following directory:

/var/lib/oz/cells.d

Using Firefox as an example, the following snippets from /var/lib/oz/cells.d/firefox.json show
how to apply the policy.

First, the seccomp policy file must be added to the list of files allowed in the sandbox:

"whitelist": [
, {"path":"/var/lib/oz/cells.d/firefox-whitelist.seccomp",

"read_only": true}
]

Then the seccomp policy needs to be enabled to run in enforcemode:

"seccomp": {
"mode":"whitelist"
,

"whitelist":"/var/lib/oz/cells.d/firefox-whitelist.seccomp"
, "enforce": true

}

Lastly, the Oz daemon must be restarted to load the seccomp policy. You should save your
work at this point as restarting Oz will close all of the open sandboxes. To restart the Oz
daemon, run the following command:

$ sudo systemctl restart oz-daemon.service

65

Anonymizing communications with Tor

Tor is an essential privacy tool that provides anonymity to its users. In particular, Tor hides
the location of its users. By location, we mean your IP address (which can also be used to
geo-locate your computer).

Tor hides your location by relaying your traffic through a random series of network connec-
tions (called a circuit). While your traffic passes through the hops in this circuit, the source
and destination of the traffic are hidden. The traffic eventually leaves the circuit through an
exit node. The exit node relays the traffic to its final destination but is also unaware of the
source. They are called exit nodes because they are the point where the traffic leaves the Tor
network to reach its destination on the regular Internet. Exit nodes may observe or tamper
with the traffic en-route to its destination, unless an additional layer of encryption is applied
such as TLS.

Due to the possibility that some exit nodes are malicious, we strongly advise you to use Tor
with an additional layer of encryption. This means connecting to websites over HTTPS only,
using TLS with applications such as Icedove or Hexchat, etc.

NOTE: Tor hidden services provide away to send network traffic only through the Tor network.
This eliminates the risks involved when the traffic passes through an exit node to the regular
Internet. However, this requires that the destination service is configured to run as a hidden
service. It also adds more latency to the network traffic because it must pass through more
hops to reach the hidden service. Tor hidden services are discussed in further detail in other
sections of this book.

More information about Tor can be found here:

https://www.torproject.org/about/overview

https://www.torproject.org/about/overview

66

Tor integration in Subgraph OS

Subgraph OS is integrated with the Tor anonymity network. We include many applications
that are designed to be used with Tor. These include:

• Tor Browser for browsing the web anonymously and accessing Tor hidden service
websites

• OnionShare for sharing files anonymously over Tor
• Ricochet for chatting anonymously of Tor
• CoyIM instant messager, which supports connecting to the .onion addresses for
XMPP/Jabber chat servers

Other parts of SubgraphOS are engineered to integrate with Tor seamlessly. TheMetaproxy
routes non-Tor applications over Tor. Our Oz sandbox also lets applications work seamlessly
with Tor. We also include aGnome Shell extension thatmonitors that status of connections to
the Tor network. Lastly, ROFLCopTor is a filter for the Tor control port that enforces security
policies on applications that run Tor control commands.

67

Routing applications through Tor with Subgraph Metaproxy

TheMetaproxy is an important part of Subgraph OS. It runs in the background to help appli-
cations connect through the Tor network. This is done transparently, even with applications
that are not configured or designed to work with Tor.

On other operating systems, users must specifically configure applications to connect to the
Internet through Tor. This normally requires the user to configure proxy settings of the
application to connect through Tor’s built-in proxies. Some applications do not support or
honor proxy settings. To use Tor with these applications, users often run them with using a
command-line helper called torsocks to torify the application. This is a lot of work for users.

Configuring proxies or torifying applications by hand is not an adequate solution for Sub-
graph OS. Usability and maintainability are issues with this approach. In Subgraph OS, some
applications simply would not work if there is no easy way to route them through Tor. This
is because Subgraph OS blocks outgoing connections that are not routed through Tor. This
is to prevent accidental privacy leaks. If an application has no way to communicate over Tor,
it may not be able to access the network at all.

The Metaproxy addresses this problem by automatically relaying outgoing connections
through Tor. When we say this is done transparently, we mean the following two things:

1. Users do not have to manually torify their applications or otherwise configure them to
use Tor

2. Applications that are already configured to use Tor are ignored by the Metaproxy,
therefore, it only helps those applications which need it

68

Securing the Tor control port with ROFLCopTor

The Tor service is managed by a control protocol. This lets users perform various actions
such as querying information about Tor connections, starting hidden services, and changing
configuration options. However, most applications do not need all of these features. These
extra features may actually introduce security and privacy risks if someone gains unautho-
rized access to the control port. To mitigate these risks, Subgraph OS includes a control port
filter called ROFLCopTor.

ROFLCopTor is a proxy server that is placed between Tor control clients and the Tor control
server port. ROFLCopTor handles authentication itself, meaning clients do not need to know
the authentication credentials or run with higher privileges to access to Tor control port. It
intercepts the incoming commands and outgoing responses. ROFLCopTor enforces policies
on a per-application basis for the traffic between the Tor control clients and the server.

ROFLCopTor supports policies that are bi-directional. This means that a policy can filter both
the incoming commands and the outgoing responses from the Tor control port. Policies can
also replace command and response strings. Replacements can be used to filter sensitive
information from Tor control port responses.

ROFLCopTor has a number of default policies for applications in Subgraph OS that require
access to the Tor control port. The policies work without modification for most use-cases.
This section describes how to profile applications to create new policies or modify existing
ones.

Profiling applications with ROFLCopTor

ROFLCopTor can profile applications to determine the Tor control commands that they run on
a regular basis. This makes it easier to create or edit policies.

Before profiling applications, you should stop the currently running version of ROFLCopTor:

$ sudo systemctl stop roflcoptor

To begin profiling, you must start ROFLCopTor in watchmode:

$ sudo -u roflcoptor roflcoptor watch -log_level DEBUG \
-config /etc/roflcoptor/roflcoptor_config.json

The log shows some of the commands that applications tried to run:

18:21:53 - DEBU 017 connection received tcp:127.0.0.1:44860 ->
tcp:127.0.0.1:9051
18:21:55 - ERRO 018 filter policy for gnome-shell-torstatus DENY: A->T: [GETCONF
ORPort]
18:21:55 - ERRO 019 filter policy for gnome-shell-torstatus DENY: A->T: [GETINFO

69

events/names]
18:21:55 - ERRO 01a filter policy for gnome-shell-torstatus DENY: A->T:
[SETEVENTS NOTICE NS NEWDESC NEWCONSENSUS]
18:21:55 - ERRO 01b filter policy for gnome-shell-torstatus DENY: A->T: [GETINFO
process/user]
18:21:55 - ERRO 01c filter policy for gnome-shell-torstatus DENY: A->T: [GETINFO
process/pid]
...

PressCtrl-C to stop the ROFLCopTorwatch process. Make sure to restart ROFLCopTor normally
after you are done profiling. Run the following command to restart ROFLCopTor:

$ sudo systemctl restart roflcoptor

Editing ROFLCopTor policies

Once you have a list of commands required by an application, you can create or edit a policy.

ROFLCopTor policies are written in JSON. Policies can be found in the following directory on
Subgraph OS:

/etc/roflcoptor/filters/

The following is a simple policy for the Tor Status Gnome shell extension in Subgraph OS:

{
"Name": "gnome-shell-torstatus",
"AuthNetAddr" : "tcp",
"AuthAddr" : "127.0.0.1:9051",
"client-allowed" : ["GETINFO status/bootstrap-phase", "SIGNAL NEWNYM"],
"client-allowed-prefixes" : [],
"client-replacements" : {},
"client-replacement-prefixes" : {},
"server-allowed" : ["250 OK"],
"server-allowed-prefixes" : ["250-status/bootstrap-phase="],
"server-replacement-prefixes" : {}

}

ROFLCopTor policy configuration options

Name: The name of the application to apply the policy to

AuthNetAddr: The protocol used by the Tor control port

70

AuthAddr: The address of the Tor control port

client-allowed: The list of commands allowed by the client

client-allowed-prefixes: A list of prefixes for partial allowed client commands
(commands where the suffix varies)

client-replacements: A list of commands to replace and their replacement
strings

client-replacement-prefixes: A list of client command prefixes to replace and
their replacement strings (for commands where the suffix varies)

server-allowed: The list of responses allowed by the server

server-allowed-prefixes: A list of prefixes for partial allowed server re-
sponses (responds where the suffix varies)

server-replacement-prefixes: A list of server response prefixes to replace
and their replacement strings (for responses where the suffix varies)

The most common configuration task is to add new commands and responses to the client-
allowed, client-allowed-prefixes, server-allowed, and server-allowed-prefixes options.

More documentation on configuring and using ROFLCopTor is located on the following page:
https://github.com/subgraph/roflcoptor

https://github.com/subgraph/roflcoptor

71

Hardening the operating system and applications with Grsecurity

Grsecurity is a third-party security enhancement to the Linux kernel. It is developed and
maintained by the Grsecurity team. It is implemented as a patch to the upstream Linux
kernel. Subgraph OS ships with a kernel that is patched with Grsecurity.

For more information about Grsecurity, see the following page:

https://grsecurity.net/

Configuring PaX flags with Paxrat

Paxrat is a utility in Subgraph OS for maintaining the PaX flags of applications on the com-
puter.

What is PaX?

PaX is a feature of Grsecurity that provides memory protection. Many secu-
rity vulnerabilities in applications and the Linux kernel allow attackers to
corrupt process memory. Memory corruption can be exploited to run the
attackers payload of malicious code.

PaX protects the computer from memory corruption using a number of
novel techniques such as:

1. Randomizing the layout of process memory or ASLR (Address Space
Layout Randomization), making it harder for attackers to guess
where their malicious payload is stored in process memory

2. Making memory pages non-executable, meaning that an attacker’s
payload cannot run if stored in non-executablememory

PaX includes othermemory protection and control flow integrity features so
that it is more difficult for attackers to exploit memory corruption vulnera-
bilities in applications and the kernel.

PaX does not prevent all vulnerabilities but it complicates attacks. The dif-
ference to an attacker is that with PaX they may be required to exploit mul-
tiple vulnerabilities to achieve the same effect as a single vulnerability.

More information about PaX can be found here:

https://pax.grsecurity.net/

PaX works by killing applications that violate its security policies. This proactively prevents
attacks from succeeding. However, as part of their normal functions, some applications per-
formnon-malicious actions that violate the security policies. PaX flags are exceptions to these

https://grsecurity.net/
https://pax.grsecurity.net/

72

policies. They let applications run normally without being killed by PaX when they perform
an action that appears to violate policies.

Applications such as web browsers need PaX flags to be set because they perform actions
such as JIT (Just in Time compilation). To PaX, JIT has the same profile as an attack. Applica-
tions that use a JIT compiler must be flagged as exceptions so that they are not killed.

Paxrat keeps track of the PaX flags for applications in SubgraphOS. It is designed tomaintain
the PaX flags between application updates. Paxrat runs when the system updates software,
automatically re-applying flags to upgraded applications.

Paxrat can only maintain the flags it knows about. If a user discovers that PaX is killing an
application, the configuration must be changed to disable some PaX flags. Instructions are
provided in this guide for changing the Paxrat configuration. We also advise users to report
the exception to us so that we can update the configuration for everybody.

Paxrat configuration files are written in JSON. They are stored in the following directory:

/etc/paxrat

The following is a snippet of a PaX flag configuration for Tor Browser:

"/home/user/.local/share/torbrowser/tbb/x86_64/tor-browser_en-US/Browser/firefox":
{

"flags": "m",
"nonroot": true

}

Paxrat configuration options

The first line of the configuration (in quotes) is the
path to the application. In the above example, it is:
“/home/user/.local/share/torbrowser/tbb/x86_64/tor-browser_en-
US/Browser/firefox”

flags: This a string of letters representing the various PaX flags

nonroot: This indicates whether the application is owned by the root user
or not, it is false by default but true in the example because the Tor Browser
application is owned by a normal user

NOTE: As a security precaution, Paxrat will not apply PaX flags to an appli-
cation that is owned by a nonroot user unless the nonroot option is set to
true.

There are a number of different PaX flags that can be enabled or disabled. Most are enabled
by default and must be disabled. Disabled flags are represented by a lower-case letter such
asm. Upper-case letters such asM represent enabled flags.

73

PaX flags

P/p: Enable/disable PAGEXEC

E/e: Enable/disable EMUTRAMP

M/m: Enable/disableMPROTECT

R/r: Enable/disable RANDMAP

X/x: Enable/disable RANDEXEC

S/x: Enable/disable SEGMEXEC

A detailed description of these flags can be found on the following page:

https://en.wikibooks.org/wiki/Grsecurity/Appendix/PaX_Flags

Working examples can be found in the Subgraph OS Paxrat configuration files:

/etc/paxrat/paxrat.conf

Applying PaX flags

PaX flags must be re-applied after any configuration changes. Run the following command
to re-apply PaX flags:

$ sudo paxrat

https://en.wikibooks.org/wiki/Grsecurity/Appendix/PaX_Flags

74

Anonymizing MAC addresses with Macouflage

MAC addresses are the unique identifiers for the network interface on the computer (such
as Ethernet ports andWIFI cards). Due to their unique nature, they can also compromise the
privacy of the user.

When connecting to a network, it is possible for other devices on the network to see the MAC
address of the network interface that is connected. While this is not much of a concern on
networks you trust such as your home network, it may compromise your privacy on those
who do not trust. On untrustworthy or hostile networks, uniquely identifying characteristics
such as the MAC address may allow others to track your computer.

Subgraph OS mitigates this privacy risk by always creating random MAC addresses for all of
your network interfaces. Each time one of your interfaces connects to a network, it will use
a different MAC address. This helps to anonymize you across different networks or when
connecting to the same network over and over again.

75

Preventing unauthorized USB access with USB Lockout

USB Lockout is a background feature in Subgraph OS. It protects your computer from unau-
thorized USB access while your desktop session is locked or you have logged out.

USB Lockout is intended for situations where your computer must be left unattended for
short periods. Particularly, in situations where you do not fear your computer will be stolen
but you do do not want to expose it to other risks while unattended.

Normally, when you lock the screen or logout, people may still insert a malicious USB device
into the computer. While the computer is running, a malicious device can easily compromise
it. USB Lockout denies all access for new USB devices while the screen is locked or the user
is logged out.

USB Lockout works by monitoring the state of the desktop session. When the session is
locked or logged out, USB Lockout enables the Grsecurity Deny New USB setting. When the
user unlocks the screen or logs back in, this setting is disabled, allowing access to new USB
devices once again.

See the following page page formore information about theGrsecurityDeny NewUSB feature:

https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_
Options#Deny_new_USB_connections_after_toggle

Enabling/disabling USB Lockout

WhileUSB Lockout runs automatically in the background, you canmanually enable or disable
it.

Run the following command to enable USB Lockout:

$ usblockout --enable

Run the following command to disable USB Lockout:

$ usblockout --disable

https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Deny_new_USB_connections_after_toggle
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Deny_new_USB_connections_after_toggle

76

Using virtual machines in Subgraph OS

Contrary to popular belief, there is nothing that stops the use of virtual machines in Sub-
graph OS. While the Grsecurity kernel is not compatible with VirtualBox, Qemu/KVM works
as expected. However, you must install Qemu/KVM yourself if you want to run virtual ma-
chines.

Running the following command with install Qemu/KVM:

$ sudo apt install qemu-system qemu-kvm qemu-utils

Creating a virtual machine with Qemu

The following sections are recipes onhow to useQemu/KVM in SubgraphOS. They are similar
to our own workflows for developing and testing Subgraph OS. Qemu/KVM supports many
more options than what we use in these tutorials. For more detailed information regarding
the operation of Qemu/KVM virtual machines, see the official Qemumanual:

http://wiki.qemu.org/Manual

There are multiple third-party graphical user interfaces for Qemu/KVM. These may make it
easier to configure and manage virtual machines. You can explore the various options by
visiting these pages:

• https://wiki.gnome.org/Apps/Boxes
• http://virt-manager.et.redhat.com
• http://qemuctl.sourceforge.net
• https://launchpad.net/virtualbrick

Creating a basic Linux virtual machine

Prior to creating the virtual machine, you should create a virtual hard-drive image for it:

$ qemu-img create -f qcow2 disk.qcow2 8G

Your virtual hard-drive is now ready for use. Run the following command to test a virtual
machine with the hard-drive:

$ qemu-system-x86_64 -enable-kvm -hda ./disk.qcow2 -m 4096

To start a virtual machine with an operating system ISO attached to the virtual CDROM, run
the following command:

$ qemu-system-x86_64 -enable-kvm -hda ./disk.qcow2 -m 4096 \
-cdrom ./subgraph-os-alpha_2016-06-16_2.iso -boot d

http://wiki.qemu.org/Manual
https://wiki.gnome.org/Apps/Boxes
http://virt-manager.et.redhat.com
http://qemuctl.sourceforge.net
https://launchpad.net/virtualbrick

77

Qemu/KVM options

-enable-kvm: enables KVM virtualisation, which is faster than Qemu’s emu-
lation

-hda: This attaches the virtual hard-drive you created

-m: This allocates RAM to the virtual machine (4096MB in the example)

-cdrom: The path to the operation system ISO

-boot: This specifies the boot order for the virtual machine, d is the virtual
CDROM

This example can be adapted to run the Linux distribution of your choice inside of a virtual
machine.

78

Creating an advanced Debian Stretch virtual machine using debootstrap

To have more control over the installation of Debian inside of a virtual machine, you can use
debootstrap to install the operating system. Another advantage of this approach is that you
can avoid all of the installation dialogs of the Debian installer.

This section will show how to install Debian Stretch with the Grsecurity kernel from Subgraph
OS.

Create a virtual hard-drive image for the operating system

To begin the install, you must set up a virtual hard-drive image. Follow these steps to set it
up:

1. Run the following command to create a sparse virtual hard-drive image:

$ truncate --size 8G ./disk.img

2. To format the virtual hard-drive run the following command:

$ /sbin/mkfs.ext4 ./disk.img

After formatting the hard-drive, you can create a proper partition table. We will skip
this step in the tutorial as it is not strictly necessary to run the virtual machine.

3. Mount the virtual hard-drive:

$ sudo mount -o loop ./disk.img /mnt

NOTE: You should ensure there is enough free space in the image you create. You may want
to allocate twice as much if you want to convert the image later on.

The sparse virtual hard-drive image you created will only use as much space as it requires.

Run the following command to show how much space is used by the image:

$ du -sh disk.img

The amount shown is a fraction of the total amount specified in the truncate command:

189M disk.img

To verify the total amount that was specified in the truncate command, run this command:

$ du --apparent-size -sh disk.img

The total amount should correspond with what was specified when you ran
truncate:

8.0G disk.img

79

Installing the operating system with deboostrap

Now that the virtual disk-image is created, we can now use debootstrap to install Debian
Stretch. Follow these steps to install it:

1. Run debootstrap to install the operating system:

$ sudo debootstrap --variant=mintbase --include=systemd-sysv stretch /mnt

2. Set a root password for the installed operating system:

$ sudo chroot /mnt passwd

3. Create a standard fstab configuration:

$ sudo tee /mnt/etc/fstab << EOL
/dev/sda / ext4 defaults,errors=remount-ro 0 1
EOL

Installing the Grsecurity kernel in the operating system

Run the following commands to install the Subgraph OS Grsecurity kernel in your virtual ma-
chine:

$ cd /tmp
$ apt-get download linux-{image,headers}-grsec-amd64-subgraph linux-{image,headers}-$(uname -r)
$ sudo cp ./linux-{image,headers}-$(uname -r) /mnt/tmp
$ sudo chroot /mnt
$ dpkg -i /tmp/linux-{image,headers}-*
$ update-initramfs -u -k all
$ exit

The kernel and initramfs are inside of your mounted virtual hard-drive image. Youmust copy
them to a directory on your computer to boot the virtual machine using these files. Run the
following command to copy the files to the directory you want to start the virtual machine
from:

$ cp /mnt/boot/vmlinuz-<version>-amd64 /mnt/boot/initrd.img-<version>-amd64 \
/home/user/path/to/vm

Finalizing the installation of the operating system

As the final step, we will sync the filesystem and unmount the virtual hard-drive image:

$ sync
$ sudo umount /mnt

80

(Optional) If you prefer, you may convert the virtual hard-drive image to the qcow2 format:

$ qemu-img convert -f raw -O qcow2 ./disk.img ./disk.qcow2

Starting the Debian Stretch virtual machine

Now you are ready to start the virtual machine. Run the following command to start it:

$ qemu-system-x86_64 -enable-kvm -hda ./disk.qcow2 \
-kernel ./vmlinuz-<version>-amd64 \
-initrd ./initrd.img-<version>-amd64 \
-append root=/dev/sda

NOTE: This assumes you converted the virtual hard-drive image to the qcow2. If not, replace
disk.qcow2 with the correct name of your image.

Qemu/KVM options

This section uses some new options for Qemu/KVM.

-kernel: This is the operating system kernel to boot when starting a virtual
machine

-initrd: This is the initramfs to boot when starting a virtual machine

-append: These are options to append to the kernel command line when
starting a virtual machine

If you want to install grub to keep the kernel and initrd images inside the virtual machine
you’ll have to create a full partition table. You may also need to create a separate /boot
partition. But this is out of scope for this tutorial.

Setting up simple networking in Qemu/KVM

By default, Qemu will transparently NAT your virtual machines to the host network. This can
be disabled by using the -net none flag.

Alternatively, you can also open simple tunnels between the host and the virtual machine
using the port redirection mechanism with the -redir flag:

-redir tcp:55700::55700

For more on networking in Qemu/KVM see:

• http://wiki.qemu.org/Documentation/Networking
• https://en.wikibooks.org/wiki/QEMU/Networking

http://wiki.qemu.org/Documentation/Networking
https://en.wikibooks.org/wiki/QEMU/Networking

81

Appendix

82

System call table

This section includes the Linux system call table for 64-bit Intel computers. You can use the
table to look up the corresponding numbers for system calls. This will help when writing or
debugging seccomp policies for the Oz sandbox. The numbers are presented in decimal and
hexadecimal format.

Syscall(dec) Syscall(hex) System Call

0 0x0 read
1 0x1 write
2 0x2 open
3 0x3 close
4 0x4 stat
5 0x5 fstat
6 0x6 lstat
7 0x7 poll
8 0x8 lseek
9 0x9 mmap
10 0xa mprotect
11 0xb munmap
12 0xc brk
13 0xd rt_sigaction
14 0xe rt_sigprocmask
15 0xf rt_sigreturn
16 0x10 ioctl
17 0x11 pread64
18 0x12 pwrite64
19 0x13 readv
20 0x14 writev
21 0x15 access
22 0x16 pipe
23 0x17 select
24 0x18 sched_yield
25 0x19 mremap
26 0x1a msync
27 0x1b mincore
28 0x1c madvise
29 0x1d shmget
30 0x1e shmat
31 0x1f shmctl
32 0x20 dup
33 0x21 dup2
34 0x22 pause
35 0x23 nanosleep
36 0x24 getitimer

83

Syscall(dec) Syscall(hex) System Call

37 0x25 alarm
38 0x26 setitimer
39 0x27 getpid
40 0x28 sendfile
41 0x29 socket
42 0x2a connect
43 0x2b accept
44 0x2c sendto
45 0x2d recvfrom
46 0x2e sendmsg
47 0x2f recvmsg
48 0x30 shutdown
49 0x31 bind
50 0x32 listen
51 0x33 getsockname
52 0x34 getpeername
53 0x35 socketpair
54 0x36 setsockopt
55 0x37 getsockopt
56 0x38 clone
57 0x39 fork
58 0x3a vfork
59 0x3b execve
60 0x3c exit
61 0x3d wait4
62 0x3e kill
63 0x3f uname
64 0x40 semget
65 0x41 semop
66 0x42 semctl
67 0x43 shmdt
68 0x44 msgget
69 0x45 msgsnd
70 0x46 msgrcv
71 0x47 msgctl
72 0x48 fcntl
73 0x49 flock
74 0x4a fsync
75 0x4b fdatasync
76 0x4c truncate
77 0x4d ftruncate
78 0x4e getdents
79 0x4f getcwd
80 0x50 chdir

84

Syscall(dec) Syscall(hex) System Call

81 0x51 fchdir
82 0x52 rename
83 0x53 mkdir
84 0x54 rmdir
85 0x55 creat
86 0x56 link
87 0x57 unlink
88 0x58 symlink
89 0x59 readlink
90 0x5a chmod
91 0x5b fchmod
92 0x5c chown
93 0x5d fchown
94 0x5e lchown
95 0x5f umask
96 0x60 gettimeofday
97 0x61 getrlimit
98 0x62 getrusage
99 0x63 sysinfo
100 0x64 times
101 0x65 ptrace
102 0x66 getuid
103 0x67 syslog
104 0x68 getgid
105 0x69 setuid
106 0x6a setgid
107 0x6b geteuid
108 0x6c getegid
109 0x6d setpgid
110 0x6e getppid
111 0x6f getpgrp
112 0x70 setsid
113 0x71 setreuid
114 0x72 setregid
115 0x73 getgroups
116 0x74 setgroups
117 0x75 setresuid
118 0x76 getresuid
119 0x77 setresgid
120 0x78 getresgid
121 0x79 getpgid
122 0x7a setfsuid
123 0x7b setfsgid
124 0x7c getsid

85

Syscall(dec) Syscall(hex) System Call

125 0x7d capget
126 0x7e capset
127 0x7f rt_sigpending
128 0x80 rt_sigtimedwait
129 0x81 rt_sigqueueinfo
130 0x82 rt_sigsuspend
131 0x83 sigaltstack
132 0x84 utime
133 0x85 mknod
134 0x86 uselib
135 0x87 personality
136 0x88 ustat
137 0x89 statfs
138 0x8a fstatfs
139 0x8b sysfs
140 0x8c getpriority
141 0x8d setpriority
142 0x8e sched_setparam
143 0x8f sched_getparam
144 0x90 sched_setscheduler
145 0x91 sched_getscheduler
146 0x92 sched_get_priority_max
147 0x93 sched_get_priority_min
148 0x94 sched_rr_get_interval
149 0x95 mlock
150 0x96 munlock
151 0x97 mlockall
152 0x98 munlockall
153 0x99 vhangup
154 0x9a modify_ldt
155 0x9b pivot_root
156 0x9c _sysctl
157 0x9d prctl
158 0x9e arch_prctl
159 0x9f adjtimex
160 0xa0 setrlimit
161 0xa1 chroot
162 0xa2 sync
163 0xa3 acct
164 0xa4 settimeofday
165 0xa5 mount
166 0xa6 umount2
167 0xa7 swapon
168 0xa8 swapoff

86

Syscall(dec) Syscall(hex) System Call

169 0xa9 reboot
170 0xaa sethostname
171 0xab setdomainname
172 0xac iopl
173 0xad ioperm
174 0xae create_module
175 0xaf init_module
176 0xb0 delete_module
177 0xb1 get_kernel_syms
178 0xb2 query_module
179 0xb3 quotactl
180 0xb4 nfsservctl
181 0xb5 getpmsg
182 0xb6 putpmsg
183 0xb7 afs_syscall
184 0xb8 tuxcall
185 0xb9 security
186 0xba gettid
187 0xbb readahead
188 0xbc setxattr
189 0xbd lsetxattr
190 0xbe fsetxattr
191 0xbf getxattr
192 0xc0 lgetxattr
193 0xc1 fgetxattr
194 0xc2 listxattr
195 0xc3 llistxattr
196 0xc4 flistxattr
197 0xc5 removexattr
198 0xc6 lremovexattr
199 0xc7 fremovexattr
200 0xc8 tkill
201 0xc9 time
202 0xca futex
203 0xcb sched_setaffinity
204 0xcc sched_getaffinity
205 0xcd set_thread_area
206 0xce io_setup
207 0xcf io_destroy
208 0xd0 io_getevents
209 0xd1 io_submit
210 0xd2 io_cancel
211 0xd3 get_thread_area
212 0xd4 lookup_dcookie

87

Syscall(dec) Syscall(hex) System Call

213 0xd5 epoll_create
214 0xd6 epoll_ctl_old
215 0xd7 epoll_wait_old
216 0xd8 remap_file_pages
217 0xd9 getdents64
218 0xda set_tid_address
219 0xdb restart_syscall
220 0xdc semtimedop
221 0xdd fadvise64
222 0xde timer_create
223 0xdf timer_settime
224 0xe0 timer_gettime
225 0xe1 timer_getoverrun
226 0xe2 timer_delete
227 0xe3 clock_settime
228 0xe4 clock_gettime
229 0xe5 clock_getres
230 0xe6 clock_nanosleep
231 0xe7 exit_group
232 0xe8 epoll_wait
233 0xe9 epoll_ctl
234 0xea tgkill
235 0xeb utimes
236 0xec vserver
237 0xed mbind
238 0xee set_mempolicy
239 0xef get_mempolicy
240 0xf0 mq_open
241 0xf1 mq_unlink
242 0xf2 mq_timedsend
243 0xf3 mq_timedreceive
244 0xf4 mq_notify
245 0xf5 mq_getsetattr
246 0xf6 kexec_load
247 0xf7 waitid
248 0xf8 add_key
249 0xf9 request_key
250 0xfa keyctl
251 0xfb ioprio_set
252 0xfc ioprio_get
253 0xfd inotify_init
254 0xfe inotify_add_watch
255 0xff inotify_rm_watch
256 0x100 migrate_pages

88

Syscall(dec) Syscall(hex) System Call

257 0x101 openat
258 0x102 mkdirat
259 0x103 mknodat
260 0x104 fchownat
261 0x105 futimesat
262 0x106 newfstatat
263 0x107 unlinkat
264 0x108 renameat
265 0x109 linkat
266 0x10a symlinkat
267 0x10b readlinkat
268 0x10c fchmodat
269 0x10d faccessat
270 0x10e pselect6
271 0x10f ppoll
272 0x110 unshare
273 0x111 set_robust_list
274 0x112 get_robust_list
275 0x113 splice
276 0x114 tee
277 0x115 sync_file_range
278 0x116 vmsplice
279 0x117 move_pages
280 0x118 utimensat
281 0x119 epoll_pwait
282 0x11a signalfd
283 0x11b timerfd_create
284 0x11c eventfd
285 0x11d fallocate
286 0x11e timerfd_settime
287 0x11f timerfd_gettime
288 0x120 accept4
289 0x121 signalfd4
290 0x122 eventfd2
291 0x123 epoll_create1
292 0x124 dup3
293 0x125 pipe2
294 0x126 inotify_init1
295 0x127 preadv
296 0x128 pwritev
297 0x129 rt_tgsigqueueinfo
298 0x12a perf_event_open
299 0x12b recvmmsg
300 0x12c fanotify_init

89

Syscall(dec) Syscall(hex) System Call

301 0x12d fanotify_mark
302 0x12e prlimit64
303 0x12f name_to_handle_at
304 0x130 open_by_handle_at
305 0x131 clock_adjtime
306 0x132 syncfs
307 0x133 sendmmsg
308 0x134 setns
309 0x135 getcpu
310 0x136 process_vm_readv
311 0x137 process_vm_writev
312 0x138 kcmp
313 0x139 finit_module
314 0x13a sched_setattr
315 0x13b sched_getattr
316 0x13c renameat2
317 0x13d seccomp
318 0x13e getrandom
319 0x13f memfd_create
320 0x140 kexec_file_load
321 0x141 bpf
322 0x142 execveat
323 0x143 userfaultfd
324 0x144 membarrier
325 0x145 mlock2
326 0x146 copy_file_range
327 0x147 preadv2
328 0x148 pwritev2

	Preface
	Subgraph OS
	What is Subgraph OS?
	What do we mean by security and privacy?
	What is adversary resistant computing?
	Getting help with Subgraph OS
	Reporting bugs
	Getting the Subgraph OS Handbook

	Installing Subgraph OS
	System requirements
	Downloading and verifying the Subgraph OS ISO
	Verifying the ISO on a Linux computer

	Installing from a USB drive on a Linux computer
	Creating a USB installer using Gnome Disks
	Creating a USB installer using dd

	Booting from a USB drive (Live mode)

	Everyday usage
	Browsing the Web with Tor Browser
	Configuring the Tor Browser security slider
	Downloading and saving files in the Tor Browser
	Uploading files in the Tor Browser

	Viewing PDFs
	Opening PDFs with Evince in the file explorer
	Adding PDFs to Evince from the Oz menu
	Opening PDFs from the command-line terminal

	Chatting with CoyIM
	Adding an XMPP account to CoyIM

	Chatting over Tor with Ricochet
	Chatting in Ricochet
	Adding a contact in Ricochet

	Sharing files with OnionShare
	Share via OnionShare
	Download files from OnionShare

	Monitoring outgoing connections with Subgraph Firewall
	Allowing or denying connections in Subgraph Firewall
	Configuring firewall rules in Subgraph Firewall

	Features and advanced usage
	Sandboxing applications with Subgraph Oz
	Enabling an Oz profile
	Disabling an Oz profile
	Viewing the status of an Oz profile
	Creating an Oz profile
	Securing system calls with seccomp in Oz
	Profiling applications with oz-seccomp-tracer
	Adding a seccomp policy to an Oz application profile

	Anonymizing communications with Tor
	Tor integration in Subgraph OS

	Routing applications through Tor with Subgraph Metaproxy
	Securing the Tor control port with ROFLCopTor
	Profiling applications with ROFLCopTor
	Editing ROFLCopTor policies

	Hardening the operating system and applications with Grsecurity
	Configuring PaX flags with Paxrat
	Applying PaX flags

	Anonymizing MAC addresses with Macouflage
	Preventing unauthorized USB access with USB Lockout
	Enabling/disabling USB Lockout

	Using virtual machines in Subgraph OS
	Creating a virtual machine with Qemu
	Creating a basic Linux virtual machine
	Creating an advanced Debian Stretch virtual machine using debootstrap
	Setting up simple networking in Qemu/KVM

	Appendix
	System call table

